3.409 \(\int \frac{x^2 (d+e x^2)^q}{a+b x^2+c x^4} \, dx\)

Optimal. Leaf size=162 \[ \frac{x \left (d+e x^2\right )^q \left (\frac{e x^2}{d}+1\right )^{-q} F_1\left (\frac{1}{2};1,-q;\frac{3}{2};-\frac{2 c x^2}{b+\sqrt{b^2-4 a c}},-\frac{e x^2}{d}\right )}{\sqrt{b^2-4 a c}}-\frac{x \left (d+e x^2\right )^q \left (\frac{e x^2}{d}+1\right )^{-q} F_1\left (\frac{1}{2};1,-q;\frac{3}{2};-\frac{2 c x^2}{b-\sqrt{b^2-4 a c}},-\frac{e x^2}{d}\right )}{\sqrt{b^2-4 a c}} \]

[Out]

-((x*(d + e*x^2)^q*AppellF1[1/2, 1, -q, 3/2, (-2*c*x^2)/(b - Sqrt[b^2 - 4*a*c]), -((e*x^2)/d)])/(Sqrt[b^2 - 4*
a*c]*(1 + (e*x^2)/d)^q)) + (x*(d + e*x^2)^q*AppellF1[1/2, 1, -q, 3/2, (-2*c*x^2)/(b + Sqrt[b^2 - 4*a*c]), -((e
*x^2)/d)])/(Sqrt[b^2 - 4*a*c]*(1 + (e*x^2)/d)^q)

________________________________________________________________________________________

Rubi [A]  time = 0.313552, antiderivative size = 162, normalized size of antiderivative = 1., number of steps used = 6, number of rules used = 3, integrand size = 27, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.111, Rules used = {1303, 430, 429} \[ \frac{x \left (d+e x^2\right )^q \left (\frac{e x^2}{d}+1\right )^{-q} F_1\left (\frac{1}{2};1,-q;\frac{3}{2};-\frac{2 c x^2}{b+\sqrt{b^2-4 a c}},-\frac{e x^2}{d}\right )}{\sqrt{b^2-4 a c}}-\frac{x \left (d+e x^2\right )^q \left (\frac{e x^2}{d}+1\right )^{-q} F_1\left (\frac{1}{2};1,-q;\frac{3}{2};-\frac{2 c x^2}{b-\sqrt{b^2-4 a c}},-\frac{e x^2}{d}\right )}{\sqrt{b^2-4 a c}} \]

Antiderivative was successfully verified.

[In]

Int[(x^2*(d + e*x^2)^q)/(a + b*x^2 + c*x^4),x]

[Out]

-((x*(d + e*x^2)^q*AppellF1[1/2, 1, -q, 3/2, (-2*c*x^2)/(b - Sqrt[b^2 - 4*a*c]), -((e*x^2)/d)])/(Sqrt[b^2 - 4*
a*c]*(1 + (e*x^2)/d)^q)) + (x*(d + e*x^2)^q*AppellF1[1/2, 1, -q, 3/2, (-2*c*x^2)/(b + Sqrt[b^2 - 4*a*c]), -((e
*x^2)/d)])/(Sqrt[b^2 - 4*a*c]*(1 + (e*x^2)/d)^q)

Rule 1303

Int[(((f_.)*(x_))^(m_.)*((d_) + (e_.)*(x_)^2)^(q_))/((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4), x_Symbol] :> Int[Exp
andIntegrand[(d + e*x^2)^q, (f*x)^m/(a + b*x^2 + c*x^4), x], x] /; FreeQ[{a, b, c, d, e, f, q}, x] && NeQ[b^2
- 4*a*c, 0] &&  !IntegerQ[q] && IntegerQ[m]

Rule 430

Int[((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] :> Dist[(a^IntPart[p]*(a + b*x^n)^F
racPart[p])/(1 + (b*x^n)/a)^FracPart[p], Int[(1 + (b*x^n)/a)^p*(c + d*x^n)^q, x], x] /; FreeQ[{a, b, c, d, n,
p, q}, x] && NeQ[b*c - a*d, 0] && NeQ[n, -1] &&  !(IntegerQ[p] || GtQ[a, 0])

Rule 429

Int[((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] :> Simp[a^p*c^q*x*AppellF1[1/n, -p,
 -q, 1 + 1/n, -((b*x^n)/a), -((d*x^n)/c)], x] /; FreeQ[{a, b, c, d, n, p, q}, x] && NeQ[b*c - a*d, 0] && NeQ[n
, -1] && (IntegerQ[p] || GtQ[a, 0]) && (IntegerQ[q] || GtQ[c, 0])

Rubi steps

\begin{align*} \int \frac{x^2 \left (d+e x^2\right )^q}{a+b x^2+c x^4} \, dx &=\int \left (\frac{\left (1-\frac{b}{\sqrt{b^2-4 a c}}\right ) \left (d+e x^2\right )^q}{b-\sqrt{b^2-4 a c}+2 c x^2}+\frac{\left (1+\frac{b}{\sqrt{b^2-4 a c}}\right ) \left (d+e x^2\right )^q}{b+\sqrt{b^2-4 a c}+2 c x^2}\right ) \, dx\\ &=\left (1-\frac{b}{\sqrt{b^2-4 a c}}\right ) \int \frac{\left (d+e x^2\right )^q}{b-\sqrt{b^2-4 a c}+2 c x^2} \, dx+\left (1+\frac{b}{\sqrt{b^2-4 a c}}\right ) \int \frac{\left (d+e x^2\right )^q}{b+\sqrt{b^2-4 a c}+2 c x^2} \, dx\\ &=\left (\left (1-\frac{b}{\sqrt{b^2-4 a c}}\right ) \left (d+e x^2\right )^q \left (1+\frac{e x^2}{d}\right )^{-q}\right ) \int \frac{\left (1+\frac{e x^2}{d}\right )^q}{b-\sqrt{b^2-4 a c}+2 c x^2} \, dx+\left (\left (1+\frac{b}{\sqrt{b^2-4 a c}}\right ) \left (d+e x^2\right )^q \left (1+\frac{e x^2}{d}\right )^{-q}\right ) \int \frac{\left (1+\frac{e x^2}{d}\right )^q}{b+\sqrt{b^2-4 a c}+2 c x^2} \, dx\\ &=-\frac{x \left (d+e x^2\right )^q \left (1+\frac{e x^2}{d}\right )^{-q} F_1\left (\frac{1}{2};1,-q;\frac{3}{2};-\frac{2 c x^2}{b-\sqrt{b^2-4 a c}},-\frac{e x^2}{d}\right )}{\sqrt{b^2-4 a c}}+\frac{x \left (d+e x^2\right )^q \left (1+\frac{e x^2}{d}\right )^{-q} F_1\left (\frac{1}{2};1,-q;\frac{3}{2};-\frac{2 c x^2}{b+\sqrt{b^2-4 a c}},-\frac{e x^2}{d}\right )}{\sqrt{b^2-4 a c}}\\ \end{align*}

Mathematica [F]  time = 0.102823, size = 0, normalized size = 0. \[ \int \frac{x^2 \left (d+e x^2\right )^q}{a+b x^2+c x^4} \, dx \]

Verification is Not applicable to the result.

[In]

Integrate[(x^2*(d + e*x^2)^q)/(a + b*x^2 + c*x^4),x]

[Out]

Integrate[(x^2*(d + e*x^2)^q)/(a + b*x^2 + c*x^4), x]

________________________________________________________________________________________

Maple [F]  time = 0.043, size = 0, normalized size = 0. \begin{align*} \int{\frac{{x}^{2} \left ( e{x}^{2}+d \right ) ^{q}}{c{x}^{4}+b{x}^{2}+a}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^2*(e*x^2+d)^q/(c*x^4+b*x^2+a),x)

[Out]

int(x^2*(e*x^2+d)^q/(c*x^4+b*x^2+a),x)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (e x^{2} + d\right )}^{q} x^{2}}{c x^{4} + b x^{2} + a}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2*(e*x^2+d)^q/(c*x^4+b*x^2+a),x, algorithm="maxima")

[Out]

integrate((e*x^2 + d)^q*x^2/(c*x^4 + b*x^2 + a), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{{\left (e x^{2} + d\right )}^{q} x^{2}}{c x^{4} + b x^{2} + a}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2*(e*x^2+d)^q/(c*x^4+b*x^2+a),x, algorithm="fricas")

[Out]

integral((e*x^2 + d)^q*x^2/(c*x^4 + b*x^2 + a), x)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**2*(e*x**2+d)**q/(c*x**4+b*x**2+a),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (e x^{2} + d\right )}^{q} x^{2}}{c x^{4} + b x^{2} + a}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2*(e*x^2+d)^q/(c*x^4+b*x^2+a),x, algorithm="giac")

[Out]

integrate((e*x^2 + d)^q*x^2/(c*x^4 + b*x^2 + a), x)